Modular Cut-Elimination: Finding Proofs or Counterexamples

نویسندگان

  • Agata Ciabattoni
  • Kazushige Terui
چکیده

Modular cut-elimination is a particular notion of ”cut-elimination in the presence of non-logical axioms” that is preserved under the addition of suitable rules. We introduce syntactic necessary and sufficient conditions for modular cut-elimination for standard calculi, a wide class of (possibly) multipleconclusion sequent calculi with generalized quantifiers. We provide a ”universal” modular cut-elimination procedure that works uniformly for any standard calculus satisfying our conditions. The failure of these conditions generates counterexamples for modular cut-elimination and, in certain cases, for cut-elimination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical Proofs via Basic Logic

Cut-elimination, besides being an important tool in proof-theory, plays a central role in the proofs-as-programs paradigm. In recent years this approach has been extended to classical logic (cf. Girard 1991, Parigot 1991, and recently Danos Joinet Schellinx 1997). This paper introduces a new sequent calculus for (propositional) classical logic, indicated by ? C. Both, the calculus and the cut-e...

متن کامل

A Non-commutative Extension of MELL

We extend multiplicative exponential linear logic (MELL) by a non-commutative, self-dual logical operator. The extended system, called NEL, is defined in the formalism of the calculus of structures, which is a generalisation of the sequent calculus and provides a more refined analysis of proofs. We should then be able to extend the range of applications of MELL, by modelling a broad notion of s...

متن کامل

From Proofs to Focused Proofs: A Modular Proof of Focalization in Linear Logic

Probably the most significant result concerning cut-free sequent calculus proofs in linear logic is the completeness of focused proofs. This completeness theorem has a number of proof theoretic applications — e.g. in games semantics, Ludics, and proof search — and more computer science applications — e.g. logic programming, call-by-name/value evaluation. Andreoli proved this theorem for first-o...

متن کامل

Proof Transformation by CERES

Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton ...

متن کامل

System Description : The Cut - Elimination System CERES ∗

Cut-elimination is the most prominent form of proof transformation in logic. The elimination of cuts in formal proofs corresponds to the removal of intermediate statements (lemmas) in mathematical proofs. The cut-elimination method CERES (cut-elimination by resolution) works by constructing a set of clauses from a proof with cuts. Any resolution refutation of this set then serves as a skeleton ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006